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ABSTRACT 

Exact monopole solutions are constructed for an SU(N + I) gauge theory 

spontaneously broken by’s single Higgs field in the adjoint representation. The 

solutions saturate the Bogomolny lower bound on the energy and are spherically 

symmetric with respect to the angular momentum operator 3 = - i; x$ + ?, where 

T generates the maximal SU(2) subalgebra of SU(N + I). Our solutions are the most 

general ones with the above symmetry and contain N real parameters which may be 

thought of as specifying the nature of the symmetry breaking. When this symmetry 

breaking is such that the scalar field matrix has repeated eigenvalues it is found 

that only one of the possible point monopoles has a corresponding finite energy 

solution saturating the Bogomolny bound. 

t 
Presently on leave at Instituut voor Theoretische Fysica, Universiteit Leuven, 
Belgium. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 



-2- FERMILAB-Pub-78/77-THY 

1. INTRODUCTION 

After the initial work by ‘t Hooft and Polyakov,l much has been learned about 

the general structure of monopole solutions in arbitrary gauge theories. While the 

application of topological considerations allowed for a classification of possible 

monopoles, it did not provide a method for proving existence, or actually 

constructing solutions. The latter is the aim of the present paper. In the following 

we consider an SU(N + 1) gauge theory with a single Higgs field in the adjoint 

representation,‘ and seek solutions which are time independent with A0 = 0. A 

great simplification occurs in the Bogomolny-Prasad-Sommerfield limit,3’4 in 

which the symmetry breaking remains but the scalar fields become massless. In 

this limit any solution to the first order equations 6 = 60 will saturate the lower 

bound on the energy 

E) lim I Tr@i*dj 
r+m 

(1.1) 

We remark that only for certain types of symmetry breaking is the surface integral 

on the right-hand side topologically conserved, but that the above bound is always 

valid, since it depends only on integration by parts and the identity 6.6 = 0. 

The solutions we shall find are the natural generalization to SU(N + I) of the 

SU(2) Prasad-Sommerfield solution, and are spherically symmetric with respect to 

? = - i: x v’+ f; where r’ generates the maximal embedding of SU(21 in SU(N + I). 

Using the gauge freedom to make the vector field orthogonal to p, let us write 

A' = [ ii(r,i) -il x 'i/r 

@ = 0 (r, P) (1.2) 

- 
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where “M and 0 are unknown matrix functions transforming respectively as a vector 

and scalar under 3; Because of the spherical symmetry it suffices to evaluate the 

fields along say the positive z-axis. The Bogomolny equations D3Q = B3 and 

D, @ = 8, then become 

rzd$ = Yi [M+,M-l-T3 (1.3a) 

dM, 
dr= ?[M+, 4 I (1.3b) 

When T is the maximal SU(2) embedding in SU(N + 1) with T3 = diag(: , G - I, . . . 

-T + 1, -!$, it has been shown5 that the ansatz for the scalar and vector fields may 

be taken as 

4=; 
@z-$1 *. *. -* 

@N -@‘N-l i 

-@N 
/ 

0 
al 

0 a2 . . 
M+ 

-. 
= 0 3. 

--._ aN 
*-. 0 

(1.4) 

where the em and am are real radial functions, and M- = (M+)T. Substituting (1.4) 

into the Bogomolny equations (1.3) we obtain 
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2 d@m 
rdr = (a,)‘- mm (1.5a) 

da 
m= (- fi$m-l +4m-K4m+l)am dr (1.5b) 

where I < m < N, and we have defined m = N + I - m and o. =o N+I = 0. Following - - 

Ref. 6, we may now solve (1.5b) by introducing N new functions Q,, Q,,...Q, with 

a r [ mm QmmlQm+, 1 
K 

m= Q, 

dinQ, - 

@m=- dr 
+mm 

r 

(1.6) 

(1.7) 

where Q, zQ~+~ : 1. The remaining equation (1.5a) now becomes homogeneous in 

the Q, 

Q,‘Q,‘- Q,Q,” = mmQm+lQm-l 9 (1.8) 

for m = I 2 , ,...,N. Note that in order for (1.6) and (1.7) to be well-defined, the Q, 

must never vanish except at the origin. In interpreting the solutions it is useful to 

observe that if the radial magnetic field B is written in the form B = y2 diag:(Bll B,- 

B1,...,BN-BN-l, -BN) then the B, are given in terms of the Q, by 

Bm = - 
dr2 r2 

(1.9) 

Before embarking on a detailed discussion of explicit solutions, let us make 

some general remarks concerning the system (1.8) and its associated boundary 

conditions. Since we are dealing with a set of N coupled second order equations, 

- 
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we should expect, at least locally, that the general solution is a ZN-parameter 

family. However the requirement that the physical fields be finite at the origin 

imposes the conditions 

lim 4 
r+O m 

= 0 

lim a m q G 
r+O 

so that from (1.6) and (1.7) it follows that as r + 0 

Q, = rmm + O(rmm+‘) . 

Assuming the solution has a power series expansion, let us write 

Q, = rmm (I + ni, qm(“) r” 
i 

We will call such a solution regular at the origin. Substituting (1.12) into the 

equations (1.8) one may determine the following: 

(1) The coefficients qm(‘) vanish, while for n > 2 the qm (n) for15 m(Nare 

determined in terms of previously found coefficients by a set of N linear equations. 

These equations are singly degenerate for n = 2,3,...,N+l in such a way that q112), 

qC3) ,...ql(N+l) may be specified arbitrarily, the remaining coefficients then being 

uniquely determined. 

(2) The coefficients always satisfy the relation qmCn) = (-l)“qGCn) so that all 

solutions regular at the origin have the reflection property 

Q,Gr) = (-ljmm Q&) . 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

This property is very useful in constructing explicit solutions. 
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From (1) above we see that the solutions regular at the origin form an N- 

parameter subset of the general ZN-parameter solution. At infinity there are also 

N naturally occurring parameters-the eigenvalues of the traceless matrix 4. It is 

reasonable to suppose that the actual solution will map these two N-parameter 

families into each other, and indeed we shall find this to be the case. 

The SU(2) case of the equations (1.8) is trivial and yields the well-known 

Prasad-Sommerfield solution.4 In the next section we present the SU(3) example in 

detail, as it contains all the essential ingredients of the solution for general N 

which we consider in Section III. The SU(N + I) solution is naturally described by 

N + I parameters el...aN+l with Zai = 0 defined by 

Fr- 0 = -K diag (al, a2 ,..., eN+l) . (1.14) 

Most of the previously known solutions”’ for N ~2 correspond to symmetry 

breakings which could arise from a quartic potential, so that some of the 

parameters ai coincide. It is shown that all such solutions may be obtained as 

suitable limits of our general solution, and some explicit SU(3) and SU(4) examples 

are given. Section IV contains a brief discussion of the results. 

- 
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II. SU(3) SOLUTIONS 

In the SU(3) case of the system (1.8) there are just two coupled equations 

Q,‘QI’ - Q,Ql” = 2Q2 

Q,‘Q,‘- Q2Q2” = 241 . (2.1) 

Let us seek solutions which are regular at the origin so that we may impose the 

condition Q,(-r) = Q2(r) as a simplifying assumption. After some thought one 

realizes that there are solutions of the form 

Q, = 2 ( Alea” + A2eu2’ + A3ea3’ ) 

Q, = 2 Ale 
-cr,r 

+ A2e -9’ + A3e-03’) , (2.2) 

where the factor 2 has been extracted for convenience and the variables A. a. are 
I’ I 

constrained by 

,a1 +a2+a 3 = 0 (2.3) 

AiAj$ - aj)’ = -Ak . (2.4) 

Using the three equations (2.4) to solve for the Ai in terms of the o i leaves a two- 

parameter set of solutions. However we must still apply the regularity conditions 

Qi s r2 at the origin. Expanding out the exponentials we find 
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Al + A2 + A3 = 0 

Alo 1 + A2a2 + A3u3 = 0 

+A2a22+A3a32 = 1 

These linear equations have the unique solution 

Ai = II (ai -CL j)-l 
jf i 

, 

(2.5) 

(2.6) 

which automatically satisfies the constraint (2.4), so we condude that we have 

discovered a two parameter set of solutions regular at the origin parametrized by 

“l’o2’ 3 CL with Cai = 0. A proof that we actually have all the solutions of interest 

will be sketched for general N in the next section. 

Consider now the behavior at infinity. When the oi are distinct, we choose a 

labelling such that al > a 2 > a3 and find that as r + m 

InQl = olr +0(l) 

In Q, q - 03r + O(1) 

Using (1.7), (1.9) yields the asymptotic behavior of the scalar and magnetic fields: 

4 J-bdiag(aI,a2,a3) 

(2.7) 

0 S - T3/r2 (2.8) 
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where T3 = diag (1, 0, -1). It is easy to show (for example by considering the 

functions Qie -9’ and their first derivatives) that for real ai the Qi can never 

vanish except at the origin and so we have found a meaningful solution for every 

choice of symmetry breaking with distinct eigenvalues for @. A familiar example is 

al=2,a2=0,cc3=-2givingQ1=Q 2 = sinh* r, which is merely an embedding of 

the Prasad-Sommerfield solution in SU(3). 

The question remains as to the solutions corresponding to the physically 

interesting case of symmetry breakings Q with repeated eigenvalues. Our solutions 

apparently fail in this limit because the coefficients Ai in (2.6) are divergent when 

any two CL~ coincide. To see that in fact the solutions have a finite limit let us 

write for example 

a3 = -2 (2.9) 

Inserting these into the solution (2.2) we obtain 

Q, = e-?-s 
I 

e’(3 sinh 6r - 6 cash Sr) 

9- 62 6 
+ .-2r 

with Q 2 (r) = Q C-r). We see that the limit I 6+0 is finite with 

Q, = $ { (3r - I)e’ + e-2r } 

, (2.10) 

Q, = $ {(-3r - I)e-’ + e*‘} (2.11) 

- 
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This is a resealed version of the SU(3) solution found by Bais and Weldon. Note 

that while the asymptotic behavior of Q, is still as in (2.7), that of Q1 is now 

different 

In Q, = r + In r + O(1) , 

In Q, = 2r + O(I) 

so that the asymptotic scalar and magnetic fields have become 

@ z diag (4, -Yz, I) 

B * diag (4, 4, 1)/r* 

(2.12) 

(2.13) 

A similar solution arises when % andcx 3 become equal. 

Let us note finally that before taking the limit 5 + 0 in (2.1 I) it is possible to 

let 5 be imaginary and still obtain a real solution. In this case it is easy to see that 

Q, is oscillatory with infinitely many zeros and so cannot correspond to a 

physically sensible solution. 
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III. SOLUTION FOR GENERAL N 

In this section we will first find a *N-parameter solution to the N coupled 

equations (1.8) for m = 1,2,...,N, with Q, = QN+, = 1. Following the SU(3) example 

of the previous section let us make the ansatz 

Q, = N!yi: Aiea ir , (3.1) 

where the 2N + 2 parameters oi, Ai are for the moment arbitrary. Once Q, z I and 

Q, are given, the remaining Q, (including QN+I) may be determined uniquely by 

repeated use of the differential equation (1.8). It is possible to show by induction 

that, for arbitrary Q ,, the Qmare homogeneous polynomials of degree m in Q, and 

its derivatives up to Q,(2m-2). When Q, is given by (3.1) this implies that all the 

Qm are sums of exponentials, each of which is an m-fold product of exponentids 

which appear in Q,. One finds, again by induction, that in fact only terms 

II exp air with distinct oi can occur, and that the Q, take the explicit form8 

Q, = (-I)Km(m-lbm J i:D (Aieair) I[ II hi -oj)* 1 (3.2) 
m m i,jCDm 

i<j 

where the constants B, are given by 

m-1 
II k! II e! 

L=l 
, (3.3) 

and the sum in (3.2) is over the (N+’ m ) distinct ways that the integers 1,2,...,N+l 

may be divided into two groups Dm and Dr-n with m elements in D, and 6i elements 

in Dm’ Of course the above has achieved nothing unless the QN+I defined by these 

equations is equal to unity. However from (3.2), (3.3) we see that QN+, consists of 

only a single exponential which may be set to unity by requiring 

- 
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(3.4) 

(-1)~N(N’1~~,1A1[j:i(~i-a~2]= 1 . (3.5) 

These equations impose two constraints on the variables ai, Ai in (3.1), leaving a 

*N-parameter set which we believe is the general solution to (1.8), although to 

obtain all possible real solutions, complex values of Ai, ai must be allowed. 

We are only really interested in those solutions which are regular at the 
- 

origin, i.e. those for which Q, Srmm as r + 0. In fact it is only necessary to 

impose this condition for m q 1; it then follows for all m by virtue of the 

differential equations (1.8). In order that Q, lr rN at the origin we must have 

N+I 
& Aiain = 0 , n = 0,1,2 ,..., N-l , 

N+l 

2, AiTN = ’ 

Regarding the 9 as given these linear equations have the unique solution 

Ai = II (oi - “j” 
ifi 

(3.6) 

Note that this choice automatically satisfies the constraint (3.5) so we are left with 

an N-parameter solution depending on al...aN+I with coi = 0. Inserting (3.7) into 

(3.2) the solution becomes 

(3.7) 

Q, = BrnDl 
m 

i:D Qi-CZj)-’ . 1 (3.8) 

jCDl 
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Since B m = SG and Sai = 0, these solutions have the property Q,(-r) = 

(-l)mmQm-k), and are the generalization to arbitrary N of the SU(3) example of the 

previous section. 

In order to further investigate the behavior at the origin, it is useful to 

observe that Q, satisfies the linear differential equation 

[;~~&-u~]Q1 = 0 * (3.9) 

Differentiating this equation any number of times and recalling (3.6) one finds that 

the coefficients of a power series expansion of Q, may all be expressed as 

polynomials in the ai, and that therefore, despite the form of the coefficients (3.7), 

the solution is in fact finite when any of the a i coincide. Furthermore it may be 

shown that for suitable complex choice of the u i, the expression (3.8) can reproduce 

(2) 
any solution regular at the origin [i.e. any set of complex ql’ , 

(3) q, ,...,ql (N+l) m 

(1.12)1 , and that the solution is real if and only if the oi are the zeros of a real 

polynomial. Thus we conclude that the most general real solution of (1.8) regular 

at the origin is given by (3.8) with the ai either real or in complex conjugate pairs. 

As in SU(3) the physically interesting solutions are those for real ai. 

Although we do not have an explicit proof, we believe that in this case the Qi never 

vanish except at the origin. To see the behavior at infinity let us first consider 

distinct ai with aI > a*...> a N+I. Then the asymptotic behavior of the Q, is 

given by 

InQm s . 

Using (1.7), (1.9) we then find that the asymptotic form of the scalar and magnetic 

fields is 
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0 * - y2 diag (a 1, . . . . a N+l) 

Bs-T3/r2 , (3.11) 

with T = diag(E E N 
3 2 I 2 - ‘9 a--, - =J ). Consider now the limit in which some of the di 

coincide, say as, a s+ ,,..., as+n become equal to a. To write down the explicit 

solution in the general case is rather difficult, but we may easily learn enough to 

obtain the asymptotic magnetic field. Suppose that as we take the limit, the 

differences between the eigenvalues as,...,as+n are of some common order 5. Then 

we see from the solution (3.8) that any term whose exponential contains k of the 

repeated eigenvalues will contain kk denominators of order 5, where 

k :n+l-k (3.12) 

The limit 5 + 0 can only be finite if the denominator 5 kk is cancelled by the 

appearance of a term (5rjkk m the numerator, so that as r + - the term under 

consideration acquires a leading factor r k”k multiplying the exponential. From this 

we learn that for k = I,*..., n the large -r behavior of Qs+k-, is altered such that 

with 

In Qs+k-, = ( ‘il ui + k a) r + kk In r + O(I) . 

The asymptotic form of the radial magnetic field therefore becomes 

B z (I3 - T3)/r2 

I3 = diag (0, 0, . . . . Kn,Tn-I, . . . . -Kn, 0, . . . . 0) 

(3.13) 

(3.14) 

(3.15) 
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where the non-zero entries appear in the s-th through (s+n)-th positions-i.e. the 

same positions as the equal eigenvalues of @ in the asymptotic region. When there 

is more than one set of equal a’s the magnetic field is of the form (3.14) with I3 a 

sum of terms of the form (3.15). 

We conclude this section with two SU(4) examples. If we write 

a* = I- 6 

u3 = -I+ 5 

a4 = -I- 5 

and take the limit 6 + 0 we obtain 

(3.16) 

Ql = Q3 = 3(r cash r - sinh r) 

Q, = 3(sinh* r - r*) (3.17) 

which is the solution found previously by Wilkinson. 7 The asymptotic magnetic 

field is B = diag(-I, -1, 1, l)/r2 and corresponds to I3 = diag(!&, H, -5, -K) in (3.15). 

Secondly let us consider 

a 1 = I+ 5 

a * = I 
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“3 = l-5 

a4 = -3 (3.18) 

Taking the limit 6 + 0 we obtain the SU(4) solution of Bais and Weldon 

Ql = & {er(8r2-4r+ll-e-3r} 

Q, = & {e2’(2r2 - r) + e-*‘(2r2 + r) } 

3 Q3 = zirIe 3r - e-‘(8r* + 4r + 1) } (3.191 

In this case the asymptotic magnetic field is B = diag(-l/2, -l/2, -l/2, 3/2)/r* and 

corresponds to I3 = diag(1, 0, -I, 0) in (3.151. 

IV. DISCUSSION 

We have in (3.1) to (3.5) exhibited what we believe is the most general 

solution to the system of N coupled equations (1.8). Applying the appropriate 

boundary condition at the origin, these led to an N-parameter family (3.8) of non- 

singular monopoles in SU(N + I). We should emphasize that we have found only 

those O(3) symmetric solutions for which ? is the maximal embedding of SU(2) in 

SU(N + Il. For N ~2 there are also embeddings ? which form reducible 

representations of SU(21 when viewed as N + l-dimensional matrices. There are 

always solutions with the corresponding O(3) symmetry which are merely direct 

sums of solutions for smaller N, but it is an open question whether there exist any 

genuine SU(N + 11 solutions with such symmetry.9 

- 
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In spite of the simple and elegant structure of the solution (3.8), to find the 

explicit expressions in the limiting cases where certain a parameters become equal 

is non-trivial and deserves further study. In a renormalizable theory with at most 

quartic scalar couplings, one expects the symmetry breaking to divide the 

parameters ai into two groups of equal ones. 10 In the case where one has say 

oi = c a(I 5 i 5 k) and di = -ko (k + 1 2 i ‘N + l), it is straightforward to show that 

Q, = N! 

[(N + I) a IN 

,zar L-N 
k-,(-x) + C-1) Ne-karL~~I(x) 1 

where x -IN + I)ar and 

(-Orn LmN(x) = fN -m-‘)I )Yo(+g# : . . 

(4.1) 

(4.2) 

are Laguerre polynomials. In Ref. 6, where the case k = N was solved by an 

algebraic method, it was found that all the Q, could be express.& very simply in 

terms of exponentials multiplied by Laguerre polynomials. We have been unable to 

show whether the same occurs for k f N. 

Although explicit expressions in the limiting cases present some difficulty, it 

was possible in (3.14) to compute the form of the magnetic field at large distances. 

In general the asymptotic form of a monopole solution is always a point monopole 

with 0 constant and 6 0= 0. A method of finding all such point solutions was given 

in Ref. 5, where it was shown that when Q is a constant matrix @ o, the radial 

magnetic field is always of the form B = (I3 - T3)/r2, where I3 is the 3rd component 

of an SU(2) embedding f with the property that? commutes with both I3 - T3 and 

$0’ 
When o. has distinct eigenvalues, i is necessarily zero, but when some 

eigenvalues are repeated there is always more than one choice for ;. Our result 

(3.14), (3.15) shows that of these alternatives, only for the maximal one is there a 
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corresponding finite energy solution of the Bogomolny equations. We may give an 

intuitive reason for this by noting that the choice (3.15) yields the lowest Coulomb 

energy in the magnetic field. 

It has been pointed out’1 that O(3) symmetric instanton solutions in four- 

dimensional Euclidean space (t, x, y, z) may be obtained from solutions to the “two- 

dimensional” version of (1.8): 

w af2 2 -F-Q 
324, 

= mm Qm+, Q,-, , 
a2 a2 maz 

(4.3) 

where the complex variable z is defined by z = r + it. The above equation has a 

conformal symmetry which leads to the result that if Q,(r) is any solution of the 

ordinary differential equation (1.8), then 1 $ d% ) -mmQm()4 In g*.$ is a solution of 

(4.3) for any analytic function g(z). It is therefore reasonable to expect that the 

solution (3.8) will lead to a generalization of the instanton solutions of Ref. 11, a 

question to which we hope to return elsewhere. 
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